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 Via PLD (10Hz; 300 mJ)

 Ceramic target

 Room temperature 

 Oxygen partial pressure: 6.7 Pa 

 Substrate-target distance: 4.5 ~ 6 cm

 Thickness: 50 nm

Annealing at 400 ºC in air

Results and discussion 

B. Stability of annealed a-InGaZnO TFTs

Conclusions
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Experimental

The channel layer deposition:

Fig. 2. Schematic of an a-InGaZnO TFT in a bottom-

gate coplanar configuration. [3]

Amorphous oxide semiconductors (AOSs)

are emerging as promising materials for the

active layers of thin film transistors (TFTs),

which are used in active-matrix liquid crystal

display (AMLCD) and active-matrix organic

light-emitting diode display (AMOLED). This

is largely due to the high field-effect mobility,

excellent uniformity and low-temperature

processing of AOSs, compared to conventional

amorphous silicon.[1,2] For the practical use of

AOS-based TFTs, however, some critical issues

such as stability need to be solved.

Fig. 4. Energy band diagrams of a-InGaZnO TFTs. (a)

Off-state before applying gate voltage. There are some

shallow defects which act as electron trapping centers in

as-deposited a-IGZO films. (b) On-state at the first

sweep. Most of the traps are quickly filled with electrons.

(c) Off-state after the first sweep. the trapped electrons

hop to a low energy level by relaxation.

Fig. 7. Transfer curves of an annealed device at a fixed

drain voltage of 10 V and a fixed gate voltage of 20 V.

The stress time varies from 0 to 5000 s. The source

electrode was grounded.

Fig. 8. Dependence of ΔVth on stresss time. The data are

well fitted by use of a stretched-exponential equation with

a characteristic trapping time of 6×105 s and a stretched-

exponential exponent of 0.43.

 During the gate voltage sweeping of as-prepared devices there is a large ΔVth, which

may be due to the shallow traps induced by weak chemical bonds of Zn-O and Ga-O.

 The stability of devices is improved after annealing. The change of threshold voltage

with stress time is attributed to a charge-trapping mechanism.
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Table 1 Binding energies of C 1s, In 3ds, Ga 2p and Zn

2p3 in a-IGZO films at the surface and in the bulk with a

depth of 25 nm.

A shallow trap model

 The binding energies of Zn2+ and Ga3+

downshift by 0.2 ~ 0.5 eV after annealing

 The structure of as-deposited a-IGZO

films is not compact.

 Shallow traps may be related to weak

chemical bonds of Zn-O and Ga-O.

What are these

shallow defects???

 Stretched-exponential equation:  Positive Vth shifts without significant

change of sub-threshold slope

 Charge trapping at the interface
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In this work, we have investigated the stability of TFTs based on a-InGaZnO films in

detail. A shallow trap model is proposed to explain the large threshold voltage shifts of as-

prepared devices. It is found that shallow traps may exist in as-deposited a-IGZO films,

which are not compact. The shallow traps can be annealed out to improve the device

stability.

Fig. 1. TFT innovation for flat panel displays
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A. Stability of as-prepared a-InGaZnO TFTs

Fig. 3. Transfer curves of (a) an as-prepared a-InGaZnO

TFT under continuous gate voltage sweeping for five

times at a sweep rate of 0.2 V/s and (b) the annealed a-

InGaZnO TFT under continuous gate voltage sweeping

with VDS varying from 1 to 30 V.

 A large ΔVth of ~ 5V after the first

sweep for the as-prepared a-InGaZnO

TFT .

 No obvious change in the Vth is

observed in the annealed device.

Fig. 5. XPS spectra of (a) In 3d5/2, (b) Ga 2p3/2 and

(c) Zn 2p3/2 of the as-deposited and annealed a-IGZO

films with a thickness of 50 nm.

Fig. 6. Local coordination of oxygen vacancies[4]
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