Structure, magnetic and dielectric characteristics of Ln₂NiMnO₆ (Ln= Nd and Sm) ceramics W. Z. Yang, X. Q. Liu, H. J. Zhao, Y. Q. Lin and X. M. Chen Laboratory of Dielectric materials, Department of Materials Science and Engineering, Zhejiang University, # Hangzhou 310027, China # Introduction - As a class of ferromagnetic (FM) semiconductor, La₂NiMnO₆ have gained much scientific interest, owing to their rich physics and prospects for technological - the properties of the compounds with the double perovskite structure generally change noticeably with the substitution of La³⁺ by a rare-earth element with smaller ionic radius. # Methods • Nd₂NiMnO₆ and Sm₂NiMnO₆ ceramics are prepared by solid-state sintering process, and the structure, magnetic and dielectric properties of the present ceramics have been investigated with comparison to those for La₂NiMnO₆. #### Results and discussion Fig.1. Rietveld analysis results of X-ray diffraction patterns for Nd₂NiMnO₆ (a) and Sm₂NiMnO₆ (b). (c) Crystal structure of Ln₂NiMnO₆ (Ln=Nd and Sm). Gray and purple octahedrons are corresponded to NiO₆ and MnO₆, respectively. (d) and (e) are local structure of NiO₆ and MnO₆ octahedrons in the Nd₂NiMnO₆ and Sm₁NiMnO₆, respectively. The bond lengths (Å) are shown in the NiO₆ and MnO₆ Fig.2. Temperature dependence of field cooled and zero field cooled magnetization for Nd₃NiMnO₄ (a) and Sm₃NiMnO₄ (c). The insets show inverse susceptibility and fits to the high temperature using Curia-Weiss law. Magnetic hysteresis loops of Nd₂NiMnO₆ (b) and Sm₂NiMnO₆ (d) measured at various temperatures. Fig.3. Temperature dependence of dielectric properties for $Nd_2NiMnO_6\ (a)\ (b)$ and $Sm_2NiMnO_6\ (c)\ (d).$ Fig.4. Frequency dependence of dielectric constant for Nd_2NiMnO_6 (a) and Sm_2NiMnO_6 (c). The solid lines are fitting results according to the modified Debye equation. The natural logarithm of the relaxation time τ vs. 1/T for Nd_2NiMnO_6 (b) and Sm_2NiMnO_6 (d). The solid lines are the Arrhenius fitting. Insets show the temperature dependence of α value. Fig.5. Evolution of the magnetic transition temperature $(T_{\mathcal{C}})$ and dielectric constant (\mathcal{E}') with the lanthanide ionic radius $(R_{l,n})$. The values of La_2NiMnO_g extracted from the Ref. 2. # Conclusions - a Both Nd₂NiMnO₆ and Sm₂NiMnO₆ are ferromagnetism with the monoclinic symmetry (space group $P2_4/n$). The Curie temperatures T_c of Nd₂NiMnO₆ and Sm₂NiMnO₆ is 194 K and 156 K, respectively, and it decreases with decreasing "Ni-O-Mn> bond angle which depends on $R_{1,n}$. Meanwhile, the dielectric constant v monotonically decreases with decreasing $R_{1,n}$ in the present ceramics. - The similar variation tendency of magnetic and dielectric properties with R_{Ln} indicates that the structural origins for the magnetic and dielectric response should be closely linked. # References - [1] N. S. Rogado, J. Li, A. W. Sleight, and M. A. Subramanian, Adv. Mater. 17, 2225 - [2] W. Z. Yang, X. Q. Liu, Y. Q. Lin and X. M. Chen, J. Appl. Phys. 111, 084106 (2012) # Acknowledgments This work was supported by National Science Foundation of China under Grant No. 50832005, and National Basic Research Program of China under Grant Nos. 2009CB623302 and 2009CB929503.